* Vector processor
* Multiple Instruction Issue Processors

In a vector processor, a single instruction operates

simultaneously on multiple data items. (called "SIMI
in Flynn's taxonomy)

Terminology:

¢ Scalar — a single quantity (number).

¢ Vector — an ordered series of scalar quantities — a one-dimensional
array.

Scalar Quantity Data

Vector Quantity Data | Data | Data | Data | Data | Data | Data | Data

)H

A+B=C

are represented by a vector instruction of the type

VORI V3 || VL || V2

where VOP represents a vector operation, and V1, V2, V3 indicate specific
vector registers. The operation performed is:

V3i:=V1VOrPVvz

for all register values within each vector register.

The individual element within a vector register is designated V1.X. Thus,
the vector elements of a 64-element vector register V1 are indicated as V1.1
through V1.64.

Vector Instructions are effective in several way:

[—

They significantly improve code density.

2. They reduce the number of instruction required to execute
a program.

3. They organize the data argument into regular sequences
that can be efficiently handled by the hardware.

4. They can be represent a simple loop construct, thus

removing the control overhead for loop execution.

Different accessing patterns:

Stride = 1

#

Stride = n

e bl TR

- n
-

Figure 7.1 For an array in memory, different accessing patterns use dif-
ferent strides in accessing memory.

Accessing array element, separated by an addressing distance
called the stride.

Vector i |} viD
registers - VaT

Memory

Scalar -

{(floating point)
registers

Data

:'C)—“ cache

Integer
(general-purpose)
registers

Figure 7.2 The primary storage facilities in a vector processor. Vector
LD/ST usually bypasses the data cache,

Vector functional Unit:

The vector register consist of eight or more register sets, each
consisting of 16-64 vector element. Each vector element is a
floating-point word.

16 - 64
registers

Figure 7.3 Typical vector register sizes.

Functional Unit for floating point:

1. Add/ Subtract

2. Multiplication

3. Division

4. Logical Operation

There are separate and independent functional unit to manage
the load/ store function.

Following figure show the approximate timing for a sample 4-
stage functional pipeline.

I'Pt
Jﬁ‘ﬁt’ 1‘* ﬁ
Pipeline & & R b

& <t
stages (& & &
—>| WR1.1 > to VR3.]
—| vR2.]
VR1.2 ., toVR3.2
VRZ.2
Uﬂl 3 ——» to VR3.3
VR2.3
VR1.4
N » toVR3.4
VRZ.4

4§ ta I3 l4 ts fs t7 tg
Time

Figure 7.4 Approximate timing for a sample 4-stage functional pipeline.

From Ta
VR1, —* —* VH3.

VR, ——=

L L L L
VADD
m. fu"fgb
From Ta
VRl ———s =+ WR3.
VRZ, ——b
{L indlcates L L L L
lanched data) VMEY

Figure 7.5 Two vector arithmetic units, each partitioned into four pipeline
stages. Results are latched at each latch polnt (L)

VADD V3, V2, Vi
VMPY VB, V4, V5 ~ Last VADD cycle
VADD F——t—————— - ——
V2.64 — VADD— V2.64
Vi.e4a — VADD
VMPY === ===

! .
“.... Multiply can start * Delayed if only 2 read ports
if there are 4 read ports 1o VR i g

Figure 7.6 For logically independent vector instructions, the number of

access paths to the vector register set and vector units may limit perfor-
mance. If there are four read ports, the VMPY can start on the second cycle.
Otherwise, with two ports, the VMPY must wait until the VADD completes

use of the read ports.

VLD V1, ALPHA[stride][n]
VADD V2, V3, v4
VADD V5, V1, V6

Mem — V.64
VADD : ; S
VADD Startup plus 64 > :
I‘H

Figure 7.7 While independent VLD and VADD may proceed concurrently
(with sufficient VR ports), operations that use the results of VLD do not
begin until the VLD is fully complete.

Vector Instruction / operations

32b
VOP | VR1 | VRZ2 | VR3

Vector instruction layout

{a) Vector operation: VR OP VR — VR
VADD
VSUB
VMPY
VDIV
VAND

VOR
VEOR

(b) Compare (VCOMP): VR VCOMP VR - Scalar
V1 VOOMP V2 - 5§
S(i) bitis "1™ if V1.i = V2.
Test (VTEST): V1 VTEST CC — Scalar
Si1) bit is “1" if V1.i satisfies CC
CC is the condition code specified in the instruction

{c) Accumulate (VACC): VACC: (V1 *V2) - 51
VR VACC VR — Scalar

Vector chaining Path

For these two instructions:
VaDD VR3, VR, VR2
VMPY VRS, VR3, VR4

the timing would be: VR1.3 VR1.2
+ + — 10 VR3.1
VR2.3 VRZ.2
VADD + } -
v
VMPY | 4
VR3.1
k3
VR4.1
Figure 7.12 Effect of vector chaining.
Vreg
k4 ¥
Path
¥ for ADD MPY
chaining

Figure 7.13 Vector chaining path.

